ENGLISH

【英国拉夫堡大学】—连增“Lyapunov exponents and Multiplicative Ergodic Theorem for Random Dynamical Systems in Separable Banach spaces”

发布时间:2015年10月12日 09:27 浏览量:

学术报告I

告题目:Lyapunov exponents and Multiplicative Ergodic Theorem for Random Dynamical Systems in Separable Banach spaces

报告人:连增 教授 (英国拉夫堡大学

报告时间:2015 10 15日(星期四)上午 9:00-10:00

报告地点:创新园大厦 A1101

校内联系人:柳振鑫 教授       联系电话:84708351-8022

 

摘要: We study the Lyapunov exponents and corresponding invariant subspaces for random dynamical systems in a separable Banach space, which could be generated by a stochastic PDE, and prove a version of Multiplicative Ergodic Theorem. In this seminar talk, I will report both the result and the framework of the proof. This is a joint work with Kening Lu at BYU.

 

 

学术报告II

告题目Lyapunov exponents, periodic orbits, and horseshoe for semiflows in Hilbert space

报告人连增 教授英国拉夫堡大学

报告时间:2015 10 15日(星期四)上午 10:00-11:00

报告地点:创新园大厦 A1101

校内联系人:柳振鑫 教授       联系电话:84708351-8022

 

摘要: Two settings are considered: flows on finite dimensional Riemannian manifolds, and semiflows on Hilbert spaces with potential applications to dissipative parabolic PDEs. Under certain conditions expressed in terms of Lyapunov exponents and entropy, we prove the existence of dynamical structures called horseshoes which impliesin particular the presence of infinitely many periodic solutions. For diffeomorphisms of compact manifolds, analogous results are due to A. Katok. Here we extend Katok's results to (i) continuous time and (ii) infinite dimensions. This is a joint work with Lai-Sang Young at Courant Institute.

邮编:116024

电话:(86)-531-88565657

地址:大连市甘井子区凌工路2号

Copyright© mg冰球突破·豪华版(试玩)官方网站2024      辽ICP备05001357号